Scientific Area	High Energy Physics		
Project Title	Detector Simulation and Jet Clustering for HL LHC with Quantum Computing		
Recruiting Institution	DESY - Hamburg		
PhD awarding Institution	RWTH Aachen University	PhD Duration	36 Months
Supervisor/Institution	Prof. Dr. Kerstin Borras / DESY-Hamburg and RWTH Aachen University		
Co-Supervisor/Institution	Prof. Dr. Simone Montangero / University of Padova		
Secondment(s)	University of Padova		
Project Description			

In the analyses of particle physics data from the LHC very computing resource intensive detector simulations are needed to determine efficiencies and acceptances. In the High Luminosity phase of the LHC these demands cannot be fulfilled with classical computing and Machine Learning (ML) methods are developed. In the analyses so-called jets are a very crucial tool. These collimated bunches of particles can be viewed as a proxy to the initial particles produced in the beam collisions. The jets are reconstructed with clustering algorithms, whose combinatorial effort is very large and represent again a formidable challenge for classical computers. With the employment of entanglement and superposition Quantum Computers have the potential to solve complex problems more efficiently. Therefore, Quantum Machine Learning models for detectors simulations and, if the remaining time allows, also for jet reconstruction, will be developed.

One additional potential approach is given the employment of tensor networks.

Project Objectives

- a) Assess present Quantum Machine Learning (QML) models for detector simulations
- b) Select the optimal algorithms which are suitable to be implemented for Quantum Computer application
- c) Develop a QML model, assess the achieved precision and necessary Quantum Computer resources
- d) Run the problem on a Quantum Computer simulator without noise and with noise switched on.
- e) Run the problem on real quantum computers
- f) If the remaining time allows address the problem of jet clustering in the same procedure a)-e)

Secondment: Training on Tensor Networks at University of Padova

Required Candidate Qualifications

- Experience with scientific data methods and knowledge of data analysis in particle physics.
- Preferably, knowledge of Machine Learning and Deep Learning methods.
- Preferably, knowledge in Quantum Computing and Quantum Information.
- Programming experience, preferably in Python.